Tag Archives: Philosophy

The unreasonable effectiveness of mathematics

In the post “What is the nature of mathematics“, the dilemma of whether mathematics is discovered or invented by humans has been exposed, but so far no convincing evidence has been provided in either direction.

A more profound way of approaching the issue is as posed by Eugene P. Wigner [1], asking about the unreasonable effectiveness of mathematics in the natural sciences. 

According to Roger Penrose this poses three mysteries [2] [3], identifying three distinct “worlds”: the world of our conscious perception, the physical world and the Platonic world of mathematical forms. Thus:

  • The world of physical reality seems to obey laws that actually reside in the world of mathematical forms.  
  • The perceiving minds themselves – the realm of our conscious perception – have managed to emerge from the physical world.
  • Those same minds have been able to access the mathematical world by discovering, or creating, and articulating a capital of mathematical forms and concepts.

The effectiveness of mathematics has two different aspects. An active one in which physicists develop mathematical models that allow them to accurately describe the behavior of physical phenomena, but also to make predictions about them, which is a striking fact.

Even more extraordinary, however, is the passive aspect of mathematics, such that the concepts that mathematicians explore in an abstract way end up being the solutions to problems firmly rooted in physical reality.

But this view of mathematics has detractors especially outside the field of physics, in areas where mathematics does not seem to have this behavior. Thus, the neurobiologist Jean-Pierre Changeux notes [4], “Asserting the physical reality of mathematical objects on the same level as the natural phenomena studied in biology raises, in my opinion, a considerable epistemological problem. How can an internal physical state of our brain represent another physical state external to it?”

Obviously, it seems that analyzing the problem using case studies from different areas of knowledge does not allow us to establish formal arguments to reach a conclusion about the nature of mathematics. For this reason, an abstract method must be sought to overcome these difficulties. In this sense, Information Theory (IT) [5], Algorithmic Information Theory (AIT) [6] and Theory of Computation (TC) [7] can be tools of analysis that help to solve the problem.

What do we understand by mathematics?

The question may seem obvious, but mathematics is structured in multiple areas: algebra, logic, calculus, etc., and the truth is that when we refer to the success of mathematics in the field of physics, it underlies the idea of physical theories supported by mathematical models: quantum physics, electromagnetism, general relativity, etc.

However, when these mathematical models are applied in other areas they do not seem to have the same effectiveness, for example in biology, sociology or finance, which seems to contradict the experience in the field of physics.

For this reason, a fundamental question is to analyze how these models work and what are the causes that hinder their application outside the field of physics. To do this, let us imagine any of the successful models of physics, such as the theory of gravitation, electromagnetism, quantum physics or general relativity. These models are based on a set of equations defined in mathematical language, which determine the laws that control the described phenomenon, which admit analytical solutions that describe the dynamics of the system. Thus, for example, a body subjected to a central attractive force describes a trajectory defined by a conic.

This functionality is a powerful analysis tool, since it allows to analyze systems under hypothetical conditions and to reach conclusions that can be later verified experimentally. But beware! This success scenario masks a reality that often goes unnoticed, since generally the scenarios in which the model admits an analytical solution are very limited. Thus, the gravitational model does not admit an analytical solution when the number of bodies is n>=3 [8], except in very specific cases such as the so-called Lagrange points. Moreover, the system has a very sensitive behavior to the initial conditions, so that small variations in these conditions can produce large deviations in the long term.

This is a fundamental characteristic of nonlinear systems and, although the system is governed by deterministic laws, its behavior is chaotic. Without going into details that are beyond the scope of this analysis, this is the general behavior of the cosmos and everything that happens in it.

One case that can be considered extraordinary is the quantum model which, according to the Schrödinger equation or the Heisenberg matrix model, is a linear and reversible model. However, the information that emerges from quantum reality is stochastic in nature.  

In short, the models that describe physical reality only have an analytical solution in very particular cases. For complex scenarios, particular solutions to the problem can be obtained by numerical series, but the general solution of any mathematical proposition is obtained by the Turing Machine (TM) [9].

This model can be represented in an abstract form by the concatenation of three mathematical objectsxyz〉(bit sequences) which, when executed in a Turing machine TM(〈xyz〉), determine the solution. Thus, for example, in the case of electromagnetism, the object z will correspond to the description of the boundary conditions of the system, y to the definition of Maxwell’s equations and x to the formal definition of the mathematical calculus. TM is the Turing machine defined by a finite set of states. Therefore, the problem is reduced to the treatment of a set of bits〈xyz〉 according to axiomatic rules defined in TM, and that in the optimal case can be reduced to a machine with three states (plus the HALT state) and two symbols (bit).

Nature as a Turing machine

And here we return to the starting point. How is it possible that reality can be represented by a set of bits and a small number of axiomatic rules?

Prior to the development of IT, the concept of information had no formal meaning, as evidenced by its classic dictionary definition. In fact, until communication technologies began to develop, words such as “send” referred exclusively to material objects.

However, everything that happens in the universe is interaction and transfer, and in the case of humans the most elaborate medium for this interaction is natural language, which we consider to be the most important milestone on which cultural development is based. It is perhaps for this reason that in the debate about whether mathematics is invented or discovered, natural language is used as an argument.

But TC shows that natural language is not formal, not being defined on axiomatic grounds, so that arguments based on it may be of questionable validity. And it is here that IT and TC provide a broad view on the problem posed.

In a physical system each of the component particles has physical properties and a state, in such a way that when it interacts with the environment it modifies its state according to its properties, its state and the external physical interaction. This interaction process is reciprocal and as a consequence of the whole set of interactions the system develops a temporal dynamics.

Thus, for example, the dynamics of a particle is determined by the curvature of space-time which indicates to the particle how it should move and this in turn interacts with space-time, modifying its curvature.

In short, a system has a description that is distributed in each of the parts that make up the system. Thus, the system could be described in several different ways:

  • As a set of TMs interacting with each other. 
  • As a TM describing the total system.
  • As a TM partially describing the global behavior, showing emergent properties of the system.

The fundamental conclusion is that the system is a Turing machine. Therefore, the question is not whether the mathematics is discovered or invented or to ask ourselves how it is possible for mathematics to be so effective in describing the system. The question is how it is possible for an intelligent entity – natural or artificial – to reach this conclusion and even to be able to deduce the axiomatic laws that control the system.

The justification must be based on the fact that it is nature that imposes the functionality and not the intelligent entities that are part of nature. Nature is capable of developing any computable functionality, so that among other functionalities, learning and recognition of behavioral patterns is a basic functionality of nature. In this way, nature develops a complex dynamic from which physical behavior, biology, living beings, and intelligent entities emerge.

As a consequence, nature has created structures that are able to identify its own patterns of behavior, such as physical laws, and ultimately identify nature as a Universal Turing Machine (UTM). This is what makes physical interaction consistent at all levels. Thus, in the above case of the ability of living beings to establish a spatio-temporal map, this allows them to interact with the environment; otherwise their existence would not be possible. Obviously this map corresponds to a Euclidean space, but if the living being in question were able to move at speeds close to light, the map learned would correspond to the one described by relativity.

A view beyond physics

While TC, IT and AIT are the theoretical support that allows sustaining this view of nature, advances in computer technology and AI are a source of inspiration, showing how reality can be described as a structured sequence of bits. This in turn enables functions such as pattern extraction and recognition, complexity determination and machine learning.

Despite this, fundamental questions remain to be answered, in particular what happens in those cases where mathematics does not seem to have the same success as in the case of physics, such as biology, economics or sociology. 

Many of the arguments used against the previous view are based on the fact that the description of reality in mathematical terms, or rather, in terms of computational concepts does not seem to fit, or at least not precisely, in areas of knowledge beyond physics. However, it is necessary to recognize that very significant advances have been made in areas such as biology and economics.

Thus, knowledge of biology shows that the chemistry of life is structured in several overlapping languages:

  • The language of nucleic acids, consisting of an alphabet of 4 symbols that encodes the structure of DNA and RNA.
  • The amino acid language, consisting of an alphabet of 64 symbols that encodes proteins. The transcription process for protein synthesis is carried out by means of a concordance between both languages.
  • The language of the intergenic regions of the genome. Their functionality is still to be clarified, but everything seems to indicate that they are responsible for the control of protein production in different parts of the body, through the activation of molecular switches. 

On the other hand, protein structure prediction by deep learning techniques is a solid evidence that associates biology to TC [10]. To emphasize also that biology as an information process must verify the laws of logic, in particular the recursion theorem [11], so DNA replication must be performed at least in two phases by independent processes.

In the case of economics there have been relevant advances since the 80’s of the twentieth century, with the development of computational finance [12]. But as a paradigmatic example we will focus on the financial markets, which should serve to test in an environment far from physics the hypothesis that nature has the behavior of a Turing machine. 

Basically, financial markets are a space, which can be physical or virtual, through which financial assets are exchanged between economic agents and in which the prices of such assets are defined.

A financial market is governed by the law of supply and demand. In other words, when an economic agent wants something at a certain price, he can only buy it at that price if there is another agent willing to sell him that something at that price.

Traditionally, economic agents were individuals but, with the development of complex computer applications, these applications now also act as economic agents, both supervised and unsupervised, giving rise to different types of investment strategies.

This system can be modeled by a Turing machine that emulates all the economic agents involved, or as a set of Turing machines interacting with each other, each of which emulates an economic agent.

The definition of this model requires implementing the axiomatic rules of the market, as well as the functionality of each of the economic agents, which allow them to determine the purchase or sale prices at which they are willing to negotiate. This is where the problem lies, since this depends on very diverse and complex factors, such as the availability of information on the securities traded, the agent’s psychology and many other factors such as contingencies or speculative strategies.

In brief, this makes emulation of the system impossible in practice. It should be noted, however, that brokers and automated applications can gain a competitive advantage by identifying global patterns, or even by insider trading, although this practice is punishable by law in suitably regulated markets.

The question that can be raised is whether this impossibility of precise emulation invalidates the hypothesis put forward. If we return to the case study of Newtonian gravitation, determined by the central attractive force, it can be observed that, although functionally different, it shares a fundamental characteristic that makes emulation of the system impossible in practice and that is present in all scenarios. 

If we intend to emulate the case of the solar system we must determine the position, velocity and angular momentum of all celestial bodies involved, sun, planets, dwarf planets, planetoids, satellites, as well as the rest of the bodies located in the system, such as the asteroid belt, the Kuiper belt and the Oort cloud, as well as the dispersed mass and energy. In addition, the shape and structure of solid, liquid and gaseous bodies must be determined. It will also be necessary to consider the effects of collisions that modify the structure of the resulting bodies. Finally, it will be necessary to consider physicochemical activity, such as geological, biological and radiation phenomena, since they modify the structure and dynamics of the bodies and are subject to quantum phenomena, which is another source of uncertainty.  And yet the model is not adequate, since it is necessary to apply a relativistic model.

This makes accurate emulation impossible in practice, as demonstrated by the continuous corrections in the ephemerides of GPS satellites, or the adjustments of space travel trajectories, where the journey to Pluto by NASA’s New Horizons spacecraft is a paradigmatic case.


From the previous analysis it can be hypothesized that the universe is an axiomatic system governed by laws that determine a dynamic that is a consequence of the interaction and transference of the entities that compose it.

As a consequence of the interaction and transfer phenomena, the system itself can partially and approximately emulate its own behavior, which gives rise to learning processes and finally gives rise to life and intelligence. This makes it possible for living beings to interact in a complex way with the environment and for intelligent entities to observe reality and establish models of this reality.

This gave rise to abstract representations such as natural language and mathematics. With the development of IT [5] it is concluded that all objects can be represented by a set of bits, which can be processed by axiomatic rules [7] and which optimally encoded determine the complexity of the object, defined as Kolmogorov complexity [6].

The development of TC establishes that these models can be defined as a TM, so that in the limit it can be hypothesized that the universe is equivalent to a Turing machine and that the limits of reality can go beyond the universe itself, in what is defined as multiverse and that it would be equivalent to a UTM. Esta concordancia entre un universo y una TM  permite plantear la hipótesis de que el universo no es más que información procesada por reglas axiomáticas.

Therefore, from the observation of natural phenomena we can extract the laws of behavior that constitute the abstract models (axioms), as well as the information necessary to describe the cases of reality (information). Since this representation is made on a physical reality, its representation will always be approximate, so that only the universe can emulate itself. Since the universe is consistent, models only corroborate this fact. But reciprocally, the equivalence between the universe and a TM implies that the deductions made from consistent models must be satisfied by reality.

However, everything seems to indicate that this way of perceiving reality is distorted by the senses, since at the level of classical reality what we observe are the consequences of the processes that occur at this functional level, appearing concepts such as mass, energy, inertia.

But when we explore the layers that support classical reality, this perception disappears, since our senses do not have the direct capability for its observation, in such a way that what emerges is nothing more than a model of axiomatic rules that process information, and the physical sensory conception disappears. This would justify the difficulty to understand the foundations of reality.

It is sometimes speculated that reality may be nothing more than a complex simulation, but this poses a problem, since in such a case a support for its execution would be necessary, implying the existence of an underlying reality necessary to support such a simulation [13].

There are two aspects that have not been dealt with and that are of transcendental importance for the understanding of the universe. The first concerns irreversibility in the layer of classical reality. According to the AIT, the amount of information in a TM remains constant, so the irreversibility of thermodynamic systems is an indication that these systems are open, since they do not verify this property, an aspect to which physics must provide an answer.

The second is related to the non-cloning theorem. Quantum systems are reversible and, according to the non-cloning theorem, it is not possible to make exact copies of the unknown quantum state of a particle. But according to the recursion theorem, at least two independent processes are necessary to make a copy. This would mean that in the quantum layer it is not possible to have at least two independent processes to copy such a quantum state. An alternative explanation would be that these quantum states have a non-computable complexity.

Finally, it should be noted that the question of whether mathematics was invented or discovered by humans is flawed by an anthropic view of the universe, which considers humans as a central part of it. But it must be concluded that humans are a part of the universe, as are all the entities that make up the universe, particularly mathematics.


[1]E. P. Wigner, “The unreasonable effectiveness of mathematics in the natural sciences.,” Communications on Pure and Applied Mathematics, vol. 13, no. 1, pp. 1-14, 1960.
[2]R. Penrose, The Emperor’s New Mind: Concerning Computers, Minds, and the Laws of Physics, Oxford: Oxford University Press, 1989.
[3]R. Penrose, The Road to Reality: A Complete Guide to the Laws of the Universe, London: Jonathan Cape, 2004.
[4]J.-P. Changeux and A. Connes, Conversations on Mind, Matter, and Mathematics, Princeton N. J.: Princeton University Press, 1995.
[5]C. E. Shannon, “A Mathematical Theory of Communication,” The Bell System Technical Journal, vol. 27, pp. 379-423, 1948.
[6]P. Günwald and P. Vitányi, “Shannon Information and Kolmogorov Complexity,” arXiv:cs/0410002v1 [cs:IT], 2008.
[7]M. Sipser, Introduction to the Theory of Computation, Course Technology, 2012.
[8]H. Poincaré, New Methods of Celestial Mechanics, Springer, 1992.
[9]A. M. Turing, “On computable numbers, with an application to the Entscheidungsproblem.,” Proceedings, London Mathematical Society, pp. 230-265, 1936.
[10]A. W. Senior, R. Evans and e. al., “Improved protein structure prediction using potentials from deep learning,” Nature, vol. 577, pp. 706-710, Jan 2020.
[11]S. Kleene, “On Notation for ordinal numbers,” J. Symbolic Logic, no. 3, p. 150–155, 1938.
[12]A. Savine, Modern Computational Finance: AAD and Parallel Simulations, Wiley, 2018.
[13]N. Bostrom, “Are We Living in a Computer Simulation?,” The Philosophical Quarterly, vol. 53, no. 211, p. 243–255, April 2003.

What is the nature of mathematics?

The ability of mathematics to describe the behavior of nature, particularly in the field of physics, is a surprising fact, especially when one considers that mathematics is an abstract entity created by the human mind and disconnected from physical reality.  But if mathematics is an entity created by humans, how is this precise correspondence possible?

Throughout centuries this has been a topic of debate, focusing on two opposing ideas: Is mathematics invented or discovered by humans?

This question has divided the scientific community: philosophers, physicists, logicians, cognitive scientists and linguists, and it can be said that not only is there no consensus, but generally positions are totally opposed. Mario Livio in the essay “Is God a Mathematician? [1] describes in a broad and precise way the historical events on the subject, from Greek philosophers to our days.

The aim of this post is to analyze this dilemma, introducing new analysis tools  such as Information Theory (IT) [2], Algorithmic Information Theory (AIT) [3] and Computer Theory (CT) [4], without forgetting the perspective that shows the new knowledge about Artificial Intelligence (AI).

In this post we will make a brief review of the current state of the issue, without entering into its historical development, trying to identify the difficulties that hinder its resolution, for in subsequent posts to analyze the problem from a different perspective to the conventional, using the logical tools that offer us the above theories.

Currents of thought: invented or discovered?

In a very simplified way, it can be said that at present the position that mathematics is discovered by humans is headed by Max Tegmark, who states in “Our Mathematical Universe” [5] that the universe is a purely mathematical entity, which would justify that mathematics describes reality with precision, but that reality itself is a mathematical entity.

On the other extreme, there is a large group of scientists, including cognitive scientists and biologists who, based on the fact of the brain’s capabilities, maintain that mathematics is an entity invented by humans.

Max Tegmark: Our Mathematical Universe

In both cases, there are no arguments that would tip the balance towards one of the hypotheses. Thus, in Max Tegmark’s case he maintains that the definitive theory (Theory of Everything) cannot include concepts such as “subatomic particles”, “vibrating strings”, “space-time deformation” or other man-made constructs. Therefore, the only possible description of the cosmos implies only abstract concepts and relations between them, which for him constitute the operative definition of mathematics.

This reasoning assumes that the cosmos has a nature completely independent of human perception, and its behavior is governed exclusively by such abstract concepts. This view of the cosmos seems to be correct insofar as it eliminates any anthropic view of the universe, in which humans are only a part of it. However, it does not justify that physical laws and abstract mathematical concepts are the same entity.  

In the case of those who maintain that mathematics is an entity invented by humans, the arguments do not usually have a formal structure and it could be said that in many cases they correspond more to a personal position and sentiment. An exception is the position maintained by biologists and cognitive scientists, in which the arguments are based on the creative capacity of the human brain and which would justify that mathematics is an entity created by humans.

For these, mathematics does not really differ from natural language, so mathematics would be no more than another language. Thus, the conception of mathematics would be nothing more than the idealization and abstraction of elements of the physical world. However, this approach presents several difficulties to be able to conclude that mathematics is an entity invented by humans.

On the one hand, it does not provide formal criteria for its demonstration. But it also presupposes that the ability to learn is an attribute exclusive to humans. This is a crucial point, which will be addressed in later posts. In addition, natural language is used as a central concept, without taking into account that any interaction, no matter what its nature, is carried out through language, as shown by the TC [4], which is a theory of language.

Consequently, it can be concluded that neither current of thought presents conclusive arguments about what the nature of mathematics is. For this reason, it seems necessary to analyze from new points of view what is the cause for this, since physical reality and mathematics seem intimately linked.

Mathematics as a discovered entity

In the case that considers mathematics the very essence of the cosmos, and therefore that mathematics is an entity discovered by humans, the argument is the equivalence of mathematical models with physical behavior. But for this argument to be conclusive, the Theory of Everything should be developed, in which the physical entities would be strictly of a mathematical nature. This means that reality would be supported by a set of axioms and the information describing the model, the state and the dynamics of the system.

This means a dematerialization of physics, something that somehow seems to be happening as the development of the deeper structures of physics proceeds. Thus, the particles of the standard model are nothing more than abstract entities with observable properties. This could be the key, and there is a hint in Landauer’s principle [6], which establishes an equivalence between information and energy.

But solving the problem by physical means or, to be more precise, by contrasting mathematical models with reality presents a fundamental difficulty. In general, mathematical models describe the functionality of a certain context or layer of reality, and all of them have a common characteristic, in such a way that these models are irreducible and disconnected from the underlying layers. Therefore, the deepest functional layer should be unraveled, which from the point of view of AIT and TC is a non-computable problem.

Mathematics as an invented entity

The current of opinion in favor of mathematics being an entity invented by humans is based on natural language and on the brain’s ability to learn, imagine and create. 

But this argument has two fundamental weaknesses. On the one hand, it does not provide formal arguments to conclusively demonstrate the hypothesis that mathematics is an invented entity. On the other hand, it attributes properties to the human brain that are a general characteristic of the cosmos.

The Hippocampus: A paradigmatic example of the dilemma discovered or invented

To clarify this last point, let us take as an example the invention of whole numbers by humans, which is usually used to support this view. Let us now imagine an animal interacting with the environment. Therefore, it has to interpret spacetime accurately as a basic means of survival. Obviously, the animal must have learned or invented the space-time map, something much more complex than natural numbers.

Moreover, nature has provided or invented the hippocampus [7], a neuronal structure specialized in acquiring long-term information that forms a complex convolution, forming a recurrent neuronal network, very suitable for the treatment of the space-time map and for the resolution of trajectories. And of course this structure is physical and encoded in the genome of higher animals. The question is: Is this structure discovered or invented by nature?

Regarding the use of language as an argument, it should be noted that language is the means of interaction in nature at all functional levels. Thus, biology is a language, the interaction between particles is formally a language, although this point requires a deeper analysis for its justification. In particular, natural language is in fact a non-formal language, so it is not an axiomatic language, which makes it inconsistent.

Finally, in relation to the learning capability attributed to the brain, this is a fundamental characteristic of nature, as demonstrated by mathematical models of learning and evidenced in an incipient manner by AI.

Another way of approaching the question about the nature of mathematics is through Wigner’s enigma [8], in which he asks about the inexplicable effectiveness of mathematics. But this topic and the topics opened before will be dealt with and expanded in later posts.


[1] M. Livio, Is God a Mathematician?, New York: Simon & Schuster Paperbacks, 2009.
[2] C. E. Shannon, «A Mathematical Theory of Communication,» The Bell System Technical Journal, vol. 27, pp. 379-423, 1948. 
[3] P. Günwald and P. Vitányi, “Shannon Information and Kolmogorov Complexity,” arXiv:cs/0410002v1 [cs:IT], 2008.
[4] M. Sipser, Introduction to the Theory of Computation, Course Technology, 2012.
[5] M. Tegmark, Our Mathematical Universe: My Quest For The Ultimate Nature Of Reality, Knopf Doubleday Publishing Group, 2014.
[6] R. Landauer, «Irreversibility and Heat Generation in Computing Process,» IBM J. Res. Dev., vol. 5, pp. 183-191, 1961.
[7] S. Jacobson y E. M. Marcus, Neuroanatomy for the Neuroscientist, Springer, 2008.
[8] E. P. Wigner, «The unreasonable effectiveness of mathematics in the natural sciences.,» Communications on Pure and Applied Mathematics, vol. 13, nº 1, pp. 1-14, 1960.

Reality as an information process

The purpose of physics is the description and interpretation of physical reality based on observation. To this end, mathematics has been a fundamental tool to formalize this reality through models, which in turn have allowed predictions to be made that have subsequently been experimentally verified. This creates an astonishing connection between reality and abstract logic that makes suspect the existence of a deep relationship beyond its conceptual definition. In fact, the ability of mathematics to accurately describe physical processes can lead us to think that reality is nothing more than a manifestation of a mathematical world.

But perhaps it is necessary to define in greater detail what we mean by this. Usually, when we refer to mathematics we think of concepts such as theorems or equations. However, we can have another view of mathematics as an information processing system, in which the above concepts can be interpreted as a compact expression of the behavior of the system, as shown by the algorithmic information theory [1].

In this way, physical laws determine how the information that describes the system is processed, establishing a space-time dynamic. As a consequence, a parallelism is established between the physical system and the computational system that, from an abstract point of view, are equivalent. This equivalence is somewhat astonishing, since in principle we assume that both systems belong to totally different fields of knowledge.

But apart from this fact, we can ask what consequences can be drawn from this equivalence. In particular, computability theory [2] and information theory [3] [1] provide criteria for determining the computational reversibility and complexity of a system [4]. In particular:

  • In a reversible computing system (RCS) the amount of information remains constant throughout the dynamics of the system.
  • In a non-reversible computational system (NRCS) the amount of information never increases along the dynamics of the system.
  • The complexity of the system corresponds to the most compact expression of the system, called Kolmogorov complexity and is an absolute measure.

It is important to note that in an NRCS system information is not lost, but is explicitly discarded. This means that there is no fundamental reason why such information should not be maintained, as the complexity of an RCS system remains constant. In practice, the implementation of computer systems is non-reversible in order to optimize resources, as a consequence of the technological limitations for its implementation. In fact, the energy currently needed for its implementation is much higher than that established by the Landauer principle [5].

If we focus on the analysis of reversible physical systems, such as quantum mechanics, relativity, Newtonian mechanics or electromagnetism, we can observe invariant physical magnitudes that are a consequence of computational reversibility. These are determined by unitary mathematical processes, which mean that every process has an inverse process [6]. But the difficulties in understanding reality from the point of view of mathematical logic seem to arise immediately, with thermodynamics and quantum measurement being paradigmatic examples.

In the case of quantum measurement, the state of the system before the measurement is made is in a superposition of states, so that when the measurement is made the state collapses in one of the possible states in which the system was [7]. This means that the quantum measurement scenario corresponds to that of a non-reversible computational system, in which the information in the system decreases when the superposition of states disappears, making the system non-reversible as a consequence of the loss of information.

This implies that physical reality systematically loses information, which poses two fundamental contradictions. The first is the fact that quantum mechanics is a reversible theory and that observable reality is based on it. The second is that this loss of information contradicts the systematic increase of classical entropy, which in turn poses a deeper contradiction, since in classical reality there is a spontaneous increase of information, as a consequence of the increase of entropy.

The solution to the first contradiction is relatively simple if we eliminate the anthropic vision of reality. In general, the process of quantum measurement introduces the concept of observer, which creates a certain degree of subjectivity that is very important to clarify, as it can lead to misinterpretations. In this process there are two clearly separated layers of reality, the quantum layer and the classical layer, which have already been addressed in previous posts. The realization of quantum measurement involves two quantum systems, one that we define as the system to be measured and another that corresponds to the measurement system, which can be considered as a quantum observer, and both have a quantum nature. As a result of this interaction, classical information emerges, where the classical observer is located, who can be identified e.g. with a physicist in a laboratory. 

Now consider that the measurement is structured in two blocks, one the quantum system under observation and the other the measurement system that includes the quantum observer and the classical observer. In this case it is being interpreted that the quantum system under measurement is an open quantum system that loses quantum information in the measurement process and that as a result a lesser amount of classical information emerges. In short, this scenario offers a negative balance of information.

But, on the contrary, in the quantum reality layer the interaction of two quantum systems takes place which, it can be said, mutually observe each other according to unitary operators, so that the system is closed producing an exchange of information with a null balance of information. As a result of this interaction, the classical layer emerges. But then there seems to be a positive balance of information, as classical information emerges from this process. But what really happens is that the emerging information, which constitutes the classical layer, is simply a simplified view of the quantum layer. For this reason we can say that the classical layer is an emerging reality.

So, it can be said that the quantum layer is formed by subsystems that interact with each other in a unitary way, constituting a closed system in which the information and, therefore, the complexity of the system is invariant. As a consequence of these interactions, the classical layer emerges as an irreducible reality of the quantum layer.

As for the contradiction produced by the increase in entropy, the reasons justifying this behavior seem more subtle. However, a first clue may lie in the fact that this increase occurs only in the classical layer. It must also be considered that, according to the algorithmic information theory, the complexity of a system, and therefore the amount of information that describes the system, is the set formed by the processed information and the information necessary to describe the processor itself. 

A physical scenario that can illustrate this situation is the case of the big bang [8], in which it is considered that the entropy of the system in its beginning was small or even null. This is so because the microwave background radiation shows a fairly homogeneous pattern, so the amount of information for its description and, therefore, its entropy is small. But if we create a computational model of this scenario, it is evident that the complexity of the system has increased in a formidable way, which is incompatible from the logical point of view. This indicates that in the model not only the information is incomplete, but also the description of the processes that govern it. But what physical evidence do we have to show that this is so?

Perhaps the clearest sample of this is cosmic inflation [9], so that the space-time metric changes with time, so that the spatial dimensions grow with time. To explain this behavior the existence of dark energy has been postulated as the engine of this process [10], which in a physical form recognizes the gaps revealed by mathematical logic. Perhaps one aspect that is not usually paid attention is the interaction between vacuum and photons, which produces a loss of energy in photons as space-time expands. This loss supposes a decrease of information that necessarily must be transferred to space-time.

This situation causes the vacuum, which in the context of classical physics is nothing more than an abstract metric, to become a fundamental physical piece of enormous complexity. Aspects that contribute to this conception of vacuum are the entanglement of quantum particles [11], decoherence and zero point energy [12].  

From all of the above, a hypothesis can be made as to what the structure of reality is from a computational point of view, as shown in the following figure. If we assume that the quantum layer is a unitary and closed structure, its complexity will remain constant. But the functionality and complexity of this remains hidden from observation and it is only possible to model it through an inductive process based on experimentation, which has led to the definition of physical models, in such a way that these models allow us to describe classical reality. As a consequence, the quantum layer shows a reality that constitutes the classical layer and that is a partial vision and, according to the theoretical and experimental results, extremely reduced of the underlying reality and that makes the classical reality an irreducible reality.  

The fundamental question that can be raised in this model is whether the complexity of the classical layer is constant or whether it can vary over time, since it is only bound by the laws of the underlying layer and is a partial and irreducible view of that functional layer. But for the classical layer to be invariant, it must be closed and therefore its computational description must be closed, which is not verified since it is subject to the quantum layer. Consequently, the complexity of the classical layer may change over time.

Consequently, the question arises as to whether there is any mechanism in the quantum layer that justifies the fluctuation of the complexity of the classical layer. Obviously one of the causes is quantum decoherence, which makes information observable in the classical layer. Similarly, cosmic inflation produces an increase in complexity, as space-time grows. On the contrary, attractive forces tend to reduce complexity, so gravity would be the most prominent factor.

From the observation of classical reality we can answer that currently its entropy tends to grow, as a consequence of the fact that decoherence and inflation are predominant causes. However, one can imagine recession scenarios, such as a big crunch scenario in which entropy decreased. Therefore, the entropy trend may be a consequence of the dynamic state of the system.

In summary, it can be said that the amount of information in the quantum layer remains constant, as a consequence of its unitary nature. On the contrary, the amount of information in the classical layer is determined by the amount of information that emerges from the quantum layer. Therefore, the challenge is to determine precisely the mechanisms that determine the dynamics of this process. Additionally, it is possible to analyze specific scenarios that generally correspond to the field of thermodynamics. Other interesting scenarios may be quantum in nature, such as the one proposed by Hugh Everett on the Many-Worlds Interpretation (MWI).  


[1] P. Günwald and P. Vitányi, “Shannon Information and Kolmogorov Complexity,” arXiv:cs/0410002v1 [cs:IT], 2008.
[2] M. Sipser, Introduction to the Theory of Computation, Course Technology, 2012.
[3] C. E. Shannon, “A Mathematical Theory of Communication,” vol. 27, pp. 379-423, 623-656, 1948.
[4] M. A. Nielsen and I. L. Chuang, Quantum computation and Quantum Information, Cambridge University Press, 2011.
[5] R. Landauer, «Irreversibility and Heat Generation in Computing Process,» IBM J. Res. Dev., vol. 5, pp. 183-191, 1961.
[6] J. Sakurai y J. Napolitano, Modern Quantum Mechanics, Cambridge University Press, 2017.
[7] G. Auletta, Foundations and Interpretation of Quantum Mechanics, World Scientific, 2001.
[8] A. H. Guth, The Inflationary Universe, Perseus, 1997.
[9] A. Liddle, An Introduction to Modern Cosmology, Wiley, 2003.
[10] P. J. E. Peebles and Bharat Ratra, “The cosmological constant and dark energy,” arXiv:astro-ph/0207347, 2003.
[11] A. Aspect, P. Grangier and G. Roger, “Experimental Tests of Realistic Local Theories via Bell’s Theorem,” Phys. Rev. Lett., vol. 47, pp. 460-463, 1981.
[12] H. B. G. Casimir and D. Polder, “The Influence of Retardation on the London-van der Waals Forces,” Phys. Rev., vol. 73, no. 4, pp. 360-372, 1948.

A macroscopic view of the Schrödinger cat

From the analysis carried out in the previous post, it can be concluded that, in general, it is not possible to identify the macroscopic states of a complex system with its quantum states. Thus, the macroscopic states corresponding to the dead cat (DC) or to the living cat (AC) cannot be considered quantum states, since according to quantum theory the system could be expressed as a superposition of these states. Consequently, as it has been justified, for macroscopic systems it is not possible to define quantum states such as |DC⟩ and |DC⟩. On the other hand, the states (DC) and (AC) are an observable reality, indicating that the system presents two realities, a quantum reality and an emerging reality that can be defined as classical reality.

Quantum reality will be defined by its wave function, formed by the superposition of the quantum subsystems that make up the system and which will evolve according to the existing interaction between all the quantum elements that make up the system and the environment. For simplicity, if the CAT system is considered isolated from the environment, the succession of its quantum state can be expressed as:

            |CAT[n]⟩ = |SC1[n]⟩ ⊗|SC2[n]⟩ ⊗…⊗|SCi[n]⟩ ⊗…⊗|SCk[n][n]⟩.

Expression in which it has been taken into account that the number of non-entangled quantum subsystems k also varies with time, so it is a function of the sequence n, considering time as a discrete variable. 

The observable classical reality can be described by the state of the system that, if for the object “cat” is defined as (CAT[n]), from the previous reasoning it is concluded that (CAT[n]) ≢ |CAT[n]⟩. In other words, the quantum and classical states of a complex object are not equivalent. 

The question that remains to be justified is the irreducibility of the observable classical state (CAT) from the underlying quantum reality, represented by the quantum state |CAT⟩. This can be done if it is considered that the functional relationship between states |CAT⟩ and (CAT) is extraordinarily complex, being subject to the mathematical concepts on which complex systems are based, such as they are:

  • The complexity of the space of quantum states (Hilbert space).
  • The random behavior of observable information emerging from quantum reality.
  • The enormous number of quantum entities involved in a macroscopic system.
  • The non-linearity of the laws of classical physics.

Based on Kolmogorov complexity [1], it is possible to prove that the behavior of systems with these characteristics does not support, in most cases, an analytical solution that determines the evolution of the system from its initial state. This also implies that, in practice, the process of evolution of a complex object can only be represented by itself, both on a quantum and a classical level.

According to the algorithmic information theory [1], this process is equivalent to a mathematical object composed of an ordered set of bits processed according to axiomatic rules. In such a way that the information of the object is defined by the Kolmogorov complexity, in a manner that it remains constant throughout time, as long as the process is an isolated system. It should be pointed out that the Kolmogorov complexity makes it possible to determine the information contained in an object, without previously having an alphabet for the determination of its entropy, as is the case in the information theory [2], although both concepts coincide at the limit.

From this point of view, two fundamental questions arise. The first is the evolution of the entropy of the system and the second is the apparent loss of information in the observation process, through which classical reality emerges from quantum reality. This opens a possible line of analysis that will be addressed later.

But going back to the analysis of what is the relationship between classic and quantum states, it is possible to have an intuitive view of how the state (CAT) ends up being disconnected from the state |CAT⟩, analyzing the system qualitatively.

First, it should be noted that virtually 100% of the quantum information contained in the state |CAT⟩ remains hidden within the elementary particles that make up the system. This is a consequence of the fact that the physical-chemical structure [3] of the molecules is determined exclusively by the electrons that support its covalent bonds. Next, it must be considered that the molecular interaction, on which molecular biology is based, is performed by van der Waals forces and hydrogen bonds, creating a new level of functional disconnection with the underlying layer.

Supported by this functional level appears a new functional structure formed by cellular biology  [4], from which appear living organisms, from unicellular beings to complex beings formed by multicellular organs. It is in this layer that the concept of living being emerges, establishing a new border between the strictly physical and the concept of perception. At this level the nervous tissue [5] emerges, allowing the complex interaction between individuals and on which new structures and concepts are sustained, such as consciousness, culture, social organization, which are not only reserved to human beings, although it is in the latter where the functionality is more complex.

But to the complexity of the functional layers must be added the non-linearity of the laws to which they are subject and which are necessary and sufficient conditions for a behavior of deterministic chaos [6] and which, as previously justified, is based on the algorithmic information theory [1]. This means that any variation in the initial conditions will produce a different dynamic, so that any emulation will end up diverging from the original, this behavior being the justification of free will. In this sense, Heisenberg’s uncertainty principle [7] prevents from knowing exactly the initial conditions of the classical system, in any of the functional layers described above. Consequently, all of them will have an irreducible nature and an unpredictable dynamic, determined exclusively by the system itself.

At this point and in view of this complex functional structure, we must ask what the state (CAT) refers to, since in this context the existence of a classical state has been implicitly assumed. The complex functional structure of the object “cat” allows a description at different levels. Thus, the cat object can be described in different ways:

  • As atoms and molecules subject to the laws of physical chemistry.
  • As molecules that interact according to molecular biology.
  • As complex sets of molecules that give rise to cell biology.
  • As sets of cells to form organs and living organisms.
  • As structures of information processing, that give rise to the mechanisms of perception and interaction with the environment that allow the development of individual and social behavior.

As a result, each of these functional layers can be expressed by means of a certain state. So to speak of, the definition of a unique macroscopic state (CAT) is not correct. Each of these states will describe the object according to different functional rules, so it is worth asking what relationship exists between these descriptions and what their complexity is. Analogous to the arguments used to demonstrate that the states |CAT⟩ and (CAT) are not equivalent and are uncorrelated with each other, the states that describe the “cat” object at different functional levels will not be equivalent and may to some extent be disconnected from each other.

This behavior is a proof of how reality is structured in irreducible functional layers, in such a way that each one of the layers can be modeled independently and irreducibly, by means of an ordered set of bits processed according to axiomatic rules.


[1] P. Günwald and P. Vitányi, “Shannon Information and Kolmogorov Complexity,” arXiv:cs/0410002v1 [cs:IT], 2008.
[2] C. E. Shannon, «A Mathematical Theory of Communication,» The Bell System Technical Journal, vol. 27, pp. 379-423, 1948.
[3] P. Atkins and J. de Paula, Physical Chemestry, Oxford University Press, 2006.
[4] A. Bray, J. Hopkin, R. Lewis and W. Roberts, Essential Cell Biology, Garlan Science, 2014.
[5] D. Purves and G. J. Augustine, Neuroscience, Oxford Univesisty press, 2018.
[6] J. Gleick, Chaos: Making a New Science, Penguin Books, 1988.
[7] W. Heisenberg, «The Actual Content of Quantum Theoretical Kinematics and Mechanics,» Zeit-schrift fur Physik. Translation: NASA TM-77379., vol. 43, nº 3-4, pp. 172-198, 1927.

Reality as an irreducible layered structure

Note: This post is the first in a series in which macroscopic objects will be analyzed from a quantum and classical point of view, as well as the nature of the observation. Finally, all of them will be integrated into a single article.


Quantum theory establishes the fundamentals of the behavior of particles and their interaction with each other. In general, these fundamentals apply to microscopic systems formed by a very limited number of particles. However, nothing indicates that the application of quantum theory cannot be applied to macroscopic objects, since the emerging properties of such objects must be based on the underlying quantum reality. Obviously, there is a practical limitation established by the increase in complexity, which grows exponentially as the number of elementary particles increases. 

The initial reference to this approach was made by Schrödinger [1], indicating that the quantum superposition of states did not represent any contradiction at the macroscopic level. To do this, he used what is known as Schrödinger’s cat paradox in which the cat could be in a superposition of states, one in which the cat was alive and another in which the cat was dead. Schrödinger’s original motivation was to raise a discussion about the EPR paradox [2], which revealed the incompleteness of quantum theory. This has finally been solved by Bell’s theorem [3] and its experimental verification by Aspect [4], making it clear that the entanglement of quantum particles is a reality on which quantum computation is based [5]. A summary of the aspects related to the realization of a quantum system that emulates Schrödinger cat has been made by Auletta [6], although these are restricted to non-macroscopic quantum systems.

But the question that remains is whether quantum theory can be used to describe macroscopic objects and whether the concept of quantum entanglement applies to these objects as well. Contrary to Schrödinger’s position, Wigner argued, through the friend paradox, that quantum mechanics could not have unlimited validity [7]. Recently, Frauchiger and Renner [8] have proposed a virtual experiment (Gedankenexperiment) that shows that quantum mechanics is not consistent when applied to complex objects. 

The Schrödinger cat paradigm will be used to analyze these results from two points of view, with no loss of generality, one as a quantum object and the other as a macroscopic object (in a next post). This will allow their consistency and functional relationship to be determined, leading to the establishment of an irreducible functional structure. As a consequence of this, it will also be necessary to analyze the nature of the observer within this functional structure (also in a later posts). 

Schrödinger’s cat as a quantum reality

In the Schrödinger cat experiment there are several entities [1], the radioactive particle, the radiation monitor, the poison flask and the cat. For simplicity, the experiment can be reduced to two quantum variables: the cat, which we will identify as CAT, and the system formed by the radioactive particle, the radiation monitor and the poison flask, which we will define as the poison system PS. 

Schrödinger Cat. (Source: Doug Hatfield https://commons.wikimedia.org/wiki/File:Schrodingers_cat.svg)

These quantum variables can be expressed as [9]: 

            |CAT⟩ = α1|DC⟩ + β1|LC⟩. Quantum state of the cat: dead cat |DC⟩, live cat |LC⟩.

            |PS⟩ = α2|PD⟩ + β2|PA⟩. Quantum state of the poison system: poison deactivated |PD⟩, poison activated |PA⟩.

The quantum state of the Schrödinger cat experiment SCE as a whole can be expressed as: 
               |SCE⟩ = |CAT⟩⊗|PS⟩= α1α2|DC⟩|PD⟩+α1β2|DC⟩|PA⟩+β1α2|LC⟩|PD⟩+β1β2|LC⟩|PA⟩.

Since for a classical observer the final result of the experiment requires that the states |DC⟩|PD⟩ and |LC⟩|PA⟩ are not compatible with observations,  the experiment must be prepared in such a way that the quantum states |CAT⟩ and |PS⟩ are entangled [10] [11], so that the wave function of the experiment must be: 

               |SCE⟩ = α|DC⟩|PA⟩ + β|LC⟩|PD⟩. 

As a consequence, the observation of the experiment [12] will result in a state:

            |SCE⟩ = |DC⟩|PA⟩, with probability α2, (poison activated, dead cat). 


            |SCE⟩ =|LC⟩|PD⟩, with probability β2, (poison deactivated, live cat). 

Although from the formal point of view of quantum theory the approach of the experiment is correct, for a classical observer the experiment presents several objections. One of these is related to the fact that the experiment requires establishing “a priori” the requirement that the PS and CAT systems are entangled. Something contradictory, since from the point of view of the preparation of the quantum experiment there is no restriction, being able to exist results with quantum states |DC⟩|PD⟩, or |LC⟩|PA⟩, something totally impossible for a classical observer, assuming in any case that the poison is effective, that it is taken for granted in the experiment. Therefore, the SCE experiment is inconsistent, so it is necessary to analyze the root of the incongruence between the SCE quantum system and the result of the observation. 

Another objection, which may seem trivial, is that for the SCE experiment to collapse in one of its states the OBS observer must be entangled with the experiment, since the experiment must interact with it. Otherwise, the operation performed by the observer would have no consequence on the experiment. For this reason, this aspect will require more detailed analysis. 

Returning to the first objection, from the perspective of quantum theory it may seem possible to prepare the PS and CAT systems in an entangled superposition of states. However, it should be noted that both systems are composed of a huge number of non-entangled quantum subsystems Ssubject to continuous decoherence [13] [14]. It should be noted that the Si subsystems will internally have an entangled structure. Thus, the CAT and PS systems can be expressed as: 

            |CAT⟩ = |SC1⟩ ⊗ |SC2⟩ ⊗…⊗ |SCi⟩ ⊗…⊗ |SCk⟩,

            |PS⟩= |SP1⟩⊗|SP2⟩⊗…⊗|SPi⟩⊗…⊗|SPl⟩, 

in such a way that the observation of a certain subsystem causes its state to collapse, producing no influence on the rest of the subsystems, which will develop an independent quantum dynamics. This makes it unfeasible that the states |LC⟩ and |DC⟩ can be simultaneous and as a consequence the CAT system cannot be in a superposition of these states. An analogous reasoning can be made of the PS system, although it imay seem obvious that functionally it is much simpler. 

In short, from a theoretical point of view it is possible to have a quantum system equivalent to the SCE, for which all the subsystems must be fully entangled with each other, and in addition the system will require an “a priori” preparation of its state. However, the emerging reality differs radically from this scenario, so that the experiment seems to be unfeasible in practice. But the most striking fact is that, if the SCE experiment is generalized, the observable reality would be radically different from the observed reality. 

To better understand the consequences of the quantum state of the ECS system having to be prepared “a priori”, imagine that the supplier of the poison has changed its contents to a harmless liquid. As a result of this, the experiment will be able to kill the cat without cause. 

From these conclusions the question can be raised as to whether quantum theory can explain in a general and consistent way the observable reality at the macroscopic level. But perhaps the question is also whether the assumptions on which the SCE experiment has been conducted are correct. Thus, for example: Is it correct to use the concepts of live cat or dead cat in the domain of quantum physics? Which in turn raises other kinds of questions, such as: Is it generally correct to establish a strong link between observable reality and the underlying quantum reality? 

The conclusion that can be drawn from the contradictions of the SCE experiment is that the scenario of a complex quantum system cannot be treated in the same terms as a simple system. In terms of quantum computation these correspond, respectively, to systems made up of an enormous number and a limited number of qubits [5]. As a consequence of this, classical reality will be an irreducible fact, which based on quantum reality ends up being disconnected from it. This leads to defining reality in two independent and irreducible functional layers, a quantum reality layer and a classical reality layer. This would justify the criterion established by the Copenhagen interpretation [15] and its statistical nature as a means of functionally disconnecting both realities. Thus, quantum theory would be nothing more than a description of the information that can emerge from an underlying reality, but not a description of that reality. At this point, it is important to emphasize that statistical behavior is the means by which the functional correlation between processes can be reduced or eliminated [16] and that it would be the cause of irreducibility


[1] E. Schrödinger, «Die gegenwärtige Situation in der Quantenmechanik,» Naturwissenschaften, vol. 23, pp. 844-849, 1935.
[2] A. Einstein, B. Podolsky and N. Rose, “Can Quantum-Mechanical description of Physical Reality be Considered Complete?,” Physical Review, vol. 47, pp. 777-780, 1935.
[3] J. S. Bell, «On the Einstein Podolsky Rosen Paradox,» Physics,vol. 1, nº 3, pp. 195-290, 1964.
[4] A. Aspect, P. Grangier and G. Roger, “Experimental Tests of Realistic Local Theories via Bell’s Theorem,” Phys. Rev. Lett., vol. 47, pp. 460-463, 1981.
[5] M. A. Nielsen and I. L. Chuang, Quantum computation and Quantum Information, Cambridge University Press, 2011.
[6] G. Auletta, Foundations and Interpretation of Quantum Mechanics, World Scientific, 2001.
[7] E. P. Wigner, «Remarks on the mind–body question,» in Symmetries and Reflections, Indiana University Press, 1967, pp. 171-184.
[8] D. Frauchiger and R. Renner, “Quantum Theory Cannot Consistently Describe the Use of Itself,” Nature Commun., vol. 9, no. 3711, 2018.
[9] P. Dirac, The Principles of Quantum Mechanics, Oxford University Press, 1958.
[10] E. Schrödinger, «Discussion of Probability Relations between Separated Systems,» Mathematical Proceedings of the Cambridge Philosophical Society, vol. 31, nº 4, pp. 555-563, 1935.
[11] E. Schrödinger, «Probability Relations between Separated Systems,» Mathematical Proceedings of the Cambridge Philosophical Society, vol. 32, nº 3, pp. 446­-452, 1936.
[12] M. Born, «On the quantum mechanics of collision processes.,» Zeit. Phys.(D. H. Delphenich translation), vol. 37, pp. 863-867, 1926.
[13] H. D. Zeh, «On the Interpretation of Measurement in Quantum Theory,» Found. Phys., vol. 1, nº 1, pp. 69-76, 1970.
[14] W. H. Zurek, «Decoherence, einselection, and the quantum origins of the classical,» Rev. Mod. Phys., vol. 75, nº 3, pp. 715-775, 2003.
[15] W. Heisenberg, Physics and Philosophy. The revolution in Modern Science, Harper, 1958.
[16] E. W. Weisstein, «MathWorld,» [En línea]. Available http://mathworld.wolfram.com/Covariance.html.

Information and knowledge

What is information? 

If we stick to its definition, which can be found in dictionaries, we can see that it always refers to a set of data and often adds the fact that these are sorted and processed. But we are going to see that these definitions are imprecise and even erroneous in assimilating it to the concept of knowledge.

One of the things that information theory has taught us is that any object (news, profile, image, etc.) can be expressed precisely by a set of bits. Therefore, the formal definition of information is the ordered set of symbols that represent the object and that in their basic form constitute an ordered set of bits. However, information theory itself surprisingly reveals that information has no meaning, which is technically known as “information without meaning”.

This seems to be totally contradictory, especially if we take into account the conventional idea of what is considered as information. However, this is easy to understand. Let us imagine that we find a book in which symbols appear written that are totally unknown to us. We will immediately assume that it is a text written in a language unknown to us, since, in our culture, book-shaped objects are what they usually contain. Thus, we begin to investigate and conclude that it is an unknown language without reference or Rosetta stone with any known language. Therefore, we have information but we do not know its message and as a result, the knowledge contained in the text. We can even classify the symbols that appear in the text and assign them a binary code, as we do in the digitization processes, converting the text into an ordered set of bits.

However, to know the content of the message we must analyze the information through a process that must include the keys that allow extracting the content of the message. It is exactly the same as if the message were encrypted, so the message will remain hidden if the decryption key is not available, as shown by the one-time pad encryption technique.

Ray Solomonoff, co-founder of Algorithmic Information Theory together with Andrey Kolmogorov. 

What is knowledge?

This clearly shows the difference between information and knowledge. In such a way that information is the set of data (bits) that describe an object and knowledge is the result of a process applied to this information and that is materialized in reality. In fact, reality is always subject to this scheme.

For example, suppose we are told a certain story. From the sound pressure applied to our eardrums we will end up extracting the content of the news and also we will be able to experience subjective sensations, such as pleasure or sadness. There is no doubt that the original stimulus can be represented as a set of bits, considering that audio information can be a digital content, e.g. MP3.

But for knowledge to emerge, information needs to be processed. In fact, in the previous case it is necessary to involve several different processes, among which we must highlight:

  • Biological processes responsible for the transduction of information into nerve stimuli.
  • Extraction processes of linguistic information, established by the rules of language in our brain by learning.
  • Extraction processes of subjective information, established by cultural rules in our brain by learning.

In short, knowledge is established by means of information processing. And here the debate may arise as a consequence of the diversity of processes, of their structuring, but above all because of the nature of the ultimate source from which they emerge. Countless examples can be given. But, since doubts can surely arise that this is the way reality emerges, we can try to look for a single counterexample!

A fundamental question is: Can we measure knowledge? The answer is yes and is provided by the algorithmic information theory (AIT) which, based on information theory and computer theory, allows us to establish the complexity of an object, by means of the Kolmogorov complexity K(x), which is defined as follows:

For a finite object x, K(x) is defined as the length of the shortest effective binary description of x.

Without going into complex theoretical details, it is important to mention that K(x) is an intrinsic property of the object and not a property of the evaluation process. But don’t panic! Since, in practice, we are familiar with this idea.

Let’s imagine audio, video, or general bitstream content. We know that these can be compressed, which significantly reduces their size. This means that the complexity of these objects is not determined by the number of bits of the original sequence, but by the result of the compression since through an inverse decompression process we can recover the original content. But be careful! The effective description of the object must include the result of the compression process and the description of the decompression process, needed to retrieve the message.

Complexity of digital content, equivalent to a compression process

A similar scenario is the modeling of reality, where physical processes stand out. Thus, a model is a compact definition of a reality. For example, Newton’s universal gravitation model is the most compact definition of the behavior of a gravitational system in a non-relativistic context. In this way, the model, together with the rules of calculus and the information that defines the physical scenario, will be the most compact description of the system and constitutes what we call algorithm. It is interesting to note that this is the formal definition of algorithm and that until these mathematical concepts were developed in the first half of the 20th century by Klein, Chruch and Turing, this concept was not fully established.

Alan Turing, one of the fathers of computing

It must be considered that the physical machine that supports the process is also part of the description of the object, providing the basic functions. These are axiomatically defined and in the case of the Turing machine correspond to an extremely small number of axiomatic rules.

Structure of the models, equivalent to a decompression process

In summary, we can say that knowledge is the result of information processing. Therefore, information processing is the source of reality. But this raises the question: Since there are non-computable problems, to what depth is it possible to explore reality? 

Reality as emerging information

What is reality?

The idea that reality may be nothing more than a result of emerging information is not a novel idea at all. Plato, in what is known as the allegory of the cave, exposes how reality is perceived by a group of humans chained in a cave who from birth observe reality through the shadows projected on a wall.

Modern version of the allegory of the cave

It is interesting to note that when we refer to perception, anthropic vision plays an important role, which can create some confusion by associating perception with human consciousness. To clarify this point, let’s imagine an automaton of artificial vision. In the simplest case, it will be equipped with image sensors, processes for image processing and a database of patterns to be recognized. Therefore, the system is reduced to information encoded as a sequence of bits and to a set of processes, defined axiomatically, that convert information into knowledge.

Therefore, the acquisition of information always takes place by physical processes, which in the case of the automaton are materialized by means of an image sensor based on electronic technology and in the case of living beings by means of molecular photoreceptors. As algorithmic information theory shows us, this information has no meaning until it is processed, extracting patterns contained in it.

As a result, we can draw general conclusions about the process of perception. Thus, the information can be obtained and analyzed with different degrees of detail, giving rise to different layers of reality. This is what makes humans have a limited view of reality and sometimes a distorted one.

But in the case of physics, the scientific procedure aims to solve this problem by rigorously contrasting theory and experimentation. This leads to the definition of physical models such as the theory of electromagnetism or Newton’s theory of universal gravitation that condense the behavior of nature to a certain functional level, hiding a more complex underlying reality, which is why they are irreducible models of reality. Thus, Newton’s theory of gravitation models the gravitational behavior of massive bodies without giving a justification for it.

Today we know that the theory of general relativity gives an explanation to this behavior, through the deformation of space-time by the effect of mass, which in turn determines the movement of massive bodies. However, the model is again a description limited to a certain level of detail, proposing a space-time structure that may be static, expansive or recessive, but without giving justification for it. Neither does it establish a link with the quantum behavior of matter, which is one of the objectives of the unification theories. What we can say is that all these models are a description of reality at a certain functional level.

Universal Gravitation vs. Relativistic Mechanics

Reality as information processing

But the question is: What does this have to do with perception? As we have described, perception is the result of information processing, but this is a term generally reserved for human behavior, which entails a certain degree of subjectivity or virtuality. In short, perception is a mechanism to establish reality as the result of an interpretation process of information. For this reason, we handle concepts such as virtual reality, something that computers have boosted but that is nothing new and that we can experiment through daydreaming or simply by reading a book.

Leaving aside a controversial issue such as the concept of consciousness: What is the difference between the interaction of two atoms, two complex molecules or two individuals? Let’s look at the similarities first. In all these cases, the two entities exchange and process information, in each particular case making a decision to form a molecule, synthesize a new molecule or decide to go to the cinema. The difference is the information exchanged and the functionality of each entity. Can we make any other difference? Our anthropic vision tells us that we humans are superior beings, which makes a fundamental difference. But let’s think of biology: This is nothing more than a complex interaction between molecules, to which we owe our existence!

We could argue that in the case where human intelligence intervenes the situation is different. However, the structure of the three cases is the same, so the information transferred between the entities, which as far as we know have a quantum nature, is processed with a certain functionality. The difference that can be seen is that in the case of human intervention we say that functionality is intelligent. But we must consider that it is very easy to cheat with natural language, as it becomes clear when analyzing its nature.

In short, one could say that reality is the result of emerging information and its subsequent interpretation by means of processes, whose definition is always axiomatic, at least as far as knowledge reaches.

Perhaps, all this is very abstract so a simple example, which we find in advertising techniques, can give us a more intuitive idea. Let’s suppose an image whose pixels are actually images that appear when we zoom in, as shown in the figure.

Perception of a structure in functional layers

For an observer with a limited visual capacity, only a reality that shows a specific scene of a city will emerge. But for an observer with a much greater visual acuity, or who has an appropriate measuring instrument, he will observe a much more complex reality. This example shows that the process of observation of a mathematical object formed by a sequence of bits can be structured into irreducible functional layers, depending on the processes used to interpret the information. Since everything observable in our Universe seems to follow this pattern, we can ask ourselves the question: Is this functional structure the foundation of our Universe?

Welcome to the launch

After years of dealing with information and other subjects such as engineering, physics, and mathematics, I have decided to venture into the analysis of what we mean by reality and its relationship to information. Given the nature of the subject, I hope to stick to reason, trying to avoid any kind of speculation and not let myself be carried away by enthusiasm. Formally said, I hope that the analysis responds to “pure reason” (This is a very cool statement in the Kantian style!).

I think that when we deal with issues with deep unknowns, we humans have a tendency to divert analysis in other directions that can fill the void created by lack of certainty and knowledge. I understand that these variants are the task of another department, so, except for error, they will not be treated in this context.

When writing this post I had already written several articles on the topic that you can find in the menu bar. What I will do soon is to comment on the results obtained. In the future, I hope to continue writing new articles, but because of the complexity of the subject, I do not think that the frequency can be more than two articles per year.

I thank you in advance for your comments and collaboration!