Category Archives: Philosophy

A macroscopic view of the Schrödinger cat

From the analysis carried out in the previous post, it can be concluded that, in general, it is not possible to identify the macroscopic states of a complex system with its quantum states. Thus, the macroscopic states corresponding to the dead cat (DC) or to the living cat (AC) cannot be considered quantum states, since according to quantum theory the system could be expressed as a superposition of these states. Consequently, as it has been justified, for macroscopic systems it is not possible to define quantum states such as |DC⟩ and |DC⟩. On the other hand, the states (DC) and (AC) are an observable reality, indicating that the system presents two realities, a quantum reality and an emerging reality that can be defined as classical reality.

Quantum reality will be defined by its wave function, formed by the superposition of the quantum subsystems that make up the system and which will evolve according to the existing interaction between all the quantum elements that make up the system and the environment. For simplicity, if the CAT system is considered isolated from the environment, the succession of its quantum state can be expressed as:

            |CAT[n]⟩ = |SC1[n]⟩ ⊗|SC2[n]⟩ ⊗…⊗|SCi[n]⟩ ⊗…⊗|SCk[n][n]⟩.

Expression in which it has been taken into account that the number of non-entangled quantum subsystems k also varies with time, so it is a function of the sequence n, considering time as a discrete variable. 

The observable classical reality can be described by the state of the system that, if for the object “cat” is defined as (CAT[n]), from the previous reasoning it is concluded that (CAT[n]) ≢ |CAT[n]⟩. In other words, the quantum and classical states of a complex object are not equivalent. 

The question that remains to be justified is the irreducibility of the observable classical state (CAT) from the underlying quantum reality, represented by the quantum state |CAT⟩. This can be done if it is considered that the functional relationship between states |CAT⟩ and (CAT) is extraordinarily complex, being subject to the mathematical concepts on which complex systems are based, such as they are:

  • The complexity of the space of quantum states (Hilbert space).
  • The random behavior of observable information emerging from quantum reality.
  • The enormous number of quantum entities involved in a macroscopic system.
  • The non-linearity of the laws of classical physics.

Based on Kolmogorov complexity [1], it is possible to prove that the behavior of systems with these characteristics does not support, in most cases, an analytical solution that determines the evolution of the system from its initial state. This also implies that, in practice, the process of evolution of a complex object can only be represented by itself, both on a quantum and a classical level.

According to the algorithmic information theory [1], this process is equivalent to a mathematical object composed of an ordered set of bits processed according to axiomatic rules. In such a way that the information of the object is defined by the Kolmogorov complexity, in a manner that it remains constant throughout time, as long as the process is an isolated system. It should be pointed out that the Kolmogorov complexity makes it possible to determine the information contained in an object, without previously having an alphabet for the determination of its entropy, as is the case in the information theory [2], although both concepts coincide at the limit.

From this point of view, two fundamental questions arise. The first is the evolution of the entropy of the system and the second is the apparent loss of information in the observation process, through which classical reality emerges from quantum reality. This opens a possible line of analysis that will be addressed later.

But going back to the analysis of what is the relationship between classic and quantum states, it is possible to have an intuitive view of how the state (CAT) ends up being disconnected from the state |CAT⟩, analyzing the system qualitatively.

First, it should be noted that virtually 100% of the quantum information contained in the state |CAT⟩ remains hidden within the elementary particles that make up the system. This is a consequence of the fact that the physical-chemical structure [3] of the molecules is determined exclusively by the electrons that support its covalent bonds. Next, it must be considered that the molecular interaction, on which molecular biology is based, is performed by van der Waals forces and hydrogen bonds, creating a new level of functional disconnection with the underlying layer.

Supported by this functional level appears a new functional structure formed by cellular biology  [4], from which appear living organisms, from unicellular beings to complex beings formed by multicellular organs. It is in this layer that the concept of living being emerges, establishing a new border between the strictly physical and the concept of perception. At this level the nervous tissue [5] emerges, allowing the complex interaction between individuals and on which new structures and concepts are sustained, such as consciousness, culture, social organization, which are not only reserved to human beings, although it is in the latter where the functionality is more complex.

But to the complexity of the functional layers must be added the non-linearity of the laws to which they are subject and which are necessary and sufficient conditions for a behavior of deterministic chaos [6] and which, as previously justified, is based on the algorithmic information theory [1]. This means that any variation in the initial conditions will produce a different dynamic, so that any emulation will end up diverging from the original, this behavior being the justification of free will. In this sense, Heisenberg’s uncertainty principle [7] prevents from knowing exactly the initial conditions of the classical system, in any of the functional layers described above. Consequently, all of them will have an irreducible nature and an unpredictable dynamic, determined exclusively by the system itself.

At this point and in view of this complex functional structure, we must ask what the state (CAT) refers to, since in this context the existence of a classical state has been implicitly assumed. The complex functional structure of the object “cat” allows a description at different levels. Thus, the cat object can be described in different ways:

  • As atoms and molecules subject to the laws of physical chemistry.
  • As molecules that interact according to molecular biology.
  • As complex sets of molecules that give rise to cell biology.
  • As sets of cells to form organs and living organisms.
  • As structures of information processing, that give rise to the mechanisms of perception and interaction with the environment that allow the development of individual and social behavior.

As a result, each of these functional layers can be expressed by means of a certain state. So to speak of, the definition of a unique macroscopic state (CAT) is not correct. Each of these states will describe the object according to different functional rules, so it is worth asking what relationship exists between these descriptions and what their complexity is. Analogous to the arguments used to demonstrate that the states |CAT⟩ and (CAT) are not equivalent and are uncorrelated with each other, the states that describe the “cat” object at different functional levels will not be equivalent and may to some extent be disconnected from each other.

This behavior is a proof of how reality is structured in irreducible functional layers, in such a way that each one of the layers can be modeled independently and irreducibly, by means of an ordered set of bits processed according to axiomatic rules.

Refereces

[1] P. Günwald and P. Vitányi, “Shannon Information and Kolmogorov Complexity,” arXiv:cs/0410002v1 [cs:IT], 2008.
[2] C. E. Shannon, «A Mathematical Theory of Communication,» The Bell System Technical Journal, vol. 27, pp. 379-423, 1948.
[3] P. Atkins and J. de Paula, Physical Chemestry, Oxford University Press, 2006.
[4] A. Bray, J. Hopkin, R. Lewis and W. Roberts, Essential Cell Biology, Garlan Science, 2014.
[5] D. Purves and G. J. Augustine, Neuroscience, Oxford Univesisty press, 2018.
[6] J. Gleick, Chaos: Making a New Science, Penguin Books, 1988.
[7] W. Heisenberg, «The Actual Content of Quantum Theoretical Kinematics and Mechanics,» Zeit-schrift fur Physik. Translation: NASA TM-77379., vol. 43, nº 3-4, pp. 172-198, 1927.

Reality as an irreducible layered structure

Note: This post is the first in a series in which macroscopic objects will be analyzed from a quantum and classical point of view, as well as the nature of the observation. Finally, all of them will be integrated into a single article.

Introduction

Quantum theory establishes the fundamentals of the behavior of particles and their interaction with each other. In general, these fundamentals apply to microscopic systems formed by a very limited number of particles. However, nothing indicates that the application of quantum theory cannot be applied to macroscopic objects, since the emerging properties of such objects must be based on the underlying quantum reality. Obviously, there is a practical limitation established by the increase in complexity, which grows exponentially as the number of elementary particles increases. 

The initial reference to this approach was made by Schrödinger [1], indicating that the quantum superposition of states did not represent any contradiction at the macroscopic level. To do this, he used what is known as Schrödinger’s cat paradox in which the cat could be in a superposition of states, one in which the cat was alive and another in which the cat was dead. Schrödinger’s original motivation was to raise a discussion about the EPR paradox [2], which revealed the incompleteness of quantum theory. This has finally been solved by Bell’s theorem [3] and its experimental verification by Aspect [4], making it clear that the entanglement of quantum particles is a reality on which quantum computation is based [5]. A summary of the aspects related to the realization of a quantum system that emulates Schrödinger cat has been made by Auletta [6], although these are restricted to non-macroscopic quantum systems.

But the question that remains is whether quantum theory can be used to describe macroscopic objects and whether the concept of quantum entanglement applies to these objects as well. Contrary to Schrödinger’s position, Wigner argued, through the friend paradox, that quantum mechanics could not have unlimited validity [7]. Recently, Frauchiger and Renner [8] have proposed a virtual experiment (Gedankenexperiment) that shows that quantum mechanics is not consistent when applied to complex objects. 

The Schrödinger cat paradigm will be used to analyze these results from two points of view, with no loss of generality, one as a quantum object and the other as a macroscopic object (in a next post). This will allow their consistency and functional relationship to be determined, leading to the establishment of an irreducible functional structure. As a consequence of this, it will also be necessary to analyze the nature of the observer within this functional structure (also in a later posts). 

Schrödinger’s cat as a quantum reality

In the Schrödinger cat experiment there are several entities [1], the radioactive particle, the radiation monitor, the poison flask and the cat. For simplicity, the experiment can be reduced to two quantum variables: the cat, which we will identify as CAT, and the system formed by the radioactive particle, the radiation monitor and the poison flask, which we will define as the poison system PS. 


Schrödinger Cat. (Source: Doug Hatfield https://commons.wikimedia.org/wiki/File:Schrodingers_cat.svg)

These quantum variables can be expressed as [9]: 

            |CAT⟩ = α1|DC⟩ + β1|LC⟩. Quantum state of the cat: dead cat |DC⟩, live cat |LC⟩.

            |PS⟩ = α2|PD⟩ + β2|PA⟩. Quantum state of the poison system: poison deactivated |PD⟩, poison activated |PA⟩.

The quantum state of the Schrödinger cat experiment SCE as a whole can be expressed as: 

               |SCE⟩ = |CAT⟩⊗|PS⟩= α1α2|DC⟩|PD⟩+α1β2|DC⟩|PA⟩+β1α2|LC⟩|PD⟩+β1β2|LC⟩|PA⟩.

Since for a classical observer the final result of the experiment requires that the states |DC⟩|PD⟩ and |LC⟩|PA⟩ are not compatible with observations,  the experiment must be prepared in such a way that the quantum states |CAT⟩ and |PS⟩ are entangled [10] [11], so that the wave function of the experiment must be: 

               |SCE⟩ = α|DC⟩|PA⟩ + β|LC⟩|PD⟩. 

As a consequence, the observation of the experiment [12] will result in a state:

            |SCE⟩ = |DC⟩|PA⟩, with probability α2, (poison activated, dead cat). 

or:

            |SCE⟩ =|LC⟩|PD⟩, with probability β2, (poison deactivated, live cat). 

Although from the formal point of view of quantum theory the approach of the experiment is correct, for a classical observer the experiment presents several objections. One of these is related to the fact that the experiment requires establishing “a priori” the requirement that the PS and CAT systems are entangled. Something contradictory, since from the point of view of the preparation of the quantum experiment there is no restriction, being able to exist results with quantum states |DC⟩|PD⟩, or |LC⟩|PA⟩, something totally impossible for a classical observer, assuming in any case that the poison is effective, that it is taken for granted in the experiment. Therefore, the SCE experiment is inconsistent, so it is necessary to analyze the root of the incongruence between the SCE quantum system and the result of the observation. 

Another objection, which may seem trivial, is that for the SCE experiment to collapse in one of its states the OBS observer must be entangled with the experiment, since the experiment must interact with it. Otherwise, the operation performed by the observer would have no consequence on the experiment. For this reason, this aspect will require more detailed analysis. 

Returning to the first objection, from the perspective of quantum theory it may seem possible to prepare the PS and CAT systems in an entangled superposition of states. However, it should be noted that both systems are composed of a huge number of non-entangled quantum subsystems Ssubject to continuous decoherence [13] [14]. It should be noted that the Si subsystems will internally have an entangled structure. Thus, the CAT and PS systems can be expressed as: 

            |CAT⟩ = |SC1⟩ ⊗ |SC2⟩ ⊗…⊗ |SCi⟩ ⊗…⊗ |SCk⟩,

            |PS⟩= |SP1⟩⊗|SP2⟩⊗…⊗|SPi⟩⊗…⊗|SPl⟩, 

in such a way that the observation of a certain subsystem causes its state to collapse, producing no influence on the rest of the subsystems, which will develop an independent quantum dynamics. This makes it unfeasible that the states |LC⟩ and |DC⟩ can be simultaneous and as a consequence the CAT system cannot be in a superposition of these states. An analogous reasoning can be made of the PS system, although it imay seem obvious that functionally it is much simpler. 

In short, from a theoretical point of view it is possible to have a quantum system equivalent to the SCE, for which all the subsystems must be fully entangled with each other, and in addition the system will require an “a priori” preparation of its state. However, the emerging reality differs radically from this scenario, so that the experiment seems to be unfeasible in practice. But the most striking fact is that, if the SCE experiment is generalized, the observable reality would be radically different from the observed reality. 

To better understand the consequences of the quantum state of the ECS system having to be prepared “a priori”, imagine that the supplier of the poison has changed its contents to a harmless liquid. As a result of this, the experiment will be able to kill the cat without cause. 

From these conclusions the question can be raised as to whether quantum theory can explain in a general and consistent way the observable reality at the macroscopic level. But perhaps the question is also whether the assumptions on which the SCE experiment has been conducted are correct. Thus, for example: Is it correct to use the concepts of live cat or dead cat in the domain of quantum physics? Which in turn raises other kinds of questions, such as: Is it generally correct to establish a strong link between observable reality and the underlying quantum reality? 

The conclusion that can be drawn from the contradictions of the SCE experiment is that the scenario of a complex quantum system cannot be treated in the same terms as a simple system. In terms of quantum computation these correspond, respectively, to systems made up of an enormous number and a limited number of qubits [5]. As a consequence of this, classical reality will be an irreducible fact, which based on quantum reality ends up being disconnected from it. This leads to defining reality in two independent and irreducible functional layers, a quantum reality layer and a classical reality layer. This would justify the criterion established by the Copenhagen interpretation [15] and its statistical nature as a means of functionally disconnecting both realities. Thus, quantum theory would be nothing more than a description of the information that can emerge from an underlying reality, but not a description of that reality. At this point, it is important to emphasize that statistical behavior is the means by which the functional correlation between processes can be reduced or eliminated [16] and that it would be the cause of irreducibility

References

[1] E. Schrödinger, «Die gegenwärtige Situation in der Quantenmechanik,» Naturwissenschaften, vol. 23, pp. 844-849, 1935.
[2] A. Einstein, B. Podolsky and N. Rose, “Can Quantum-Mechanical description of Physical Reality be Considered Complete?,” Physical Review, vol. 47, pp. 777-780, 1935.
[3] J. S. Bell, «On the Einstein Podolsky Rosen Paradox,» Physics,vol. 1, nº 3, pp. 195-290, 1964.
[4] A. Aspect, P. Grangier and G. Roger, “Experimental Tests of Realistic Local Theories via Bell’s Theorem,” Phys. Rev. Lett., vol. 47, pp. 460-463, 1981.
[5] M. A. Nielsen and I. L. Chuang, Quantum computation and Quantum Information, Cambridge University Press, 2011.
[6] G. Auletta, Foundations and Interpretation of Quantum Mechanics, World Scientific, 2001.
[7] E. P. Wigner, «Remarks on the mind–body question,» in Symmetries and Reflections, Indiana University Press, 1967, pp. 171-184.
[8] D. Frauchiger and R. Renner, “Quantum Theory Cannot Consistently Describe the Use of Itself,” Nature Commun., vol. 9, no. 3711, 2018.
[9] P. Dirac, The Principles of Quantum Mechanics, Oxford University Press, 1958.
[10] E. Schrödinger, «Discussion of Probability Relations between Separated Systems,» Mathematical Proceedings of the Cambridge Philosophical Society, vol. 31, nº 4, pp. 555-563, 1935.
[11] E. Schrödinger, «Probability Relations between Separated Systems,» Mathematical Proceedings of the Cambridge Philosophical Society, vol. 32, nº 3, pp. 446­-452, 1936.
[12] M. Born, «On the quantum mechanics of collision processes.,» Zeit. Phys.(D. H. Delphenich translation), vol. 37, pp. 863-867, 1926.
[13] H. D. Zeh, «On the Interpretation of Measurement in Quantum Theory,» Found. Phys., vol. 1, nº 1, pp. 69-76, 1970.
[14] W. H. Zurek, «Decoherence, einselection, and the quantum origins of the classical,» Rev. Mod. Phys., vol. 75, nº 3, pp. 715-775, 2003.
[15] W. Heisenberg, Physics and Philosophy. The revolution in Modern Science, Harper, 1958.
[16] E. W. Weisstein, «MathWorld,» [En línea]. Available http://mathworld.wolfram.com/Covariance.html.

Information and knowledge

What is information? 

If we stick to its definition, which can be found in dictionaries, we can see that it always refers to a set of data and often adds the fact that these are sorted and processed. But we are going to see that these definitions are imprecise and even erroneous in assimilating it to the concept of knowledge.

One of the things that information theory has taught us is that any object (news, profile, image, etc.) can be expressed precisely by a set of bits. Therefore, the formal definition of information is the ordered set of symbols that represent the object and that in their basic form constitute an ordered set of bits. However, information theory itself surprisingly reveals that information has no meaning, which is technically known as “information without meaning”.

This seems to be totally contradictory, especially if we take into account the conventional idea of what is considered as information. However, this is easy to understand. Let us imagine that we find a book in which symbols appear written that are totally unknown to us. We will immediately assume that it is a text written in a language unknown to us, since, in our culture, book-shaped objects are what they usually contain. Thus, we begin to investigate and conclude that it is an unknown language without reference or Rosetta stone with any known language. Therefore, we have information but we do not know its message and as a result, the knowledge contained in the text. We can even classify the symbols that appear in the text and assign them a binary code, as we do in the digitization processes, converting the text into an ordered set of bits.

However, to know the content of the message we must analyze the information through a process that must include the keys that allow extracting the content of the message. It is exactly the same as if the message were encrypted, so the message will remain hidden if the decryption key is not available, as shown by the one-time pad encryption technique.

Ray Solomonoff, co-founder of Algorithmic Information Theory together with Andrey Kolmogorov. 

What is knowledge?

This clearly shows the difference between information and knowledge. In such a way that information is the set of data (bits) that describe an object and knowledge is the result of a process applied to this information and that is materialized in reality. In fact, reality is always subject to this scheme.

For example, suppose we are told a certain story. From the sound pressure applied to our eardrums we will end up extracting the content of the news and also we will be able to experience subjective sensations, such as pleasure or sadness. There is no doubt that the original stimulus can be represented as a set of bits, considering that audio information can be a digital content, e.g. MP3.

But for knowledge to emerge, information needs to be processed. In fact, in the previous case it is necessary to involve several different processes, among which we must highlight:

  • Biological processes responsible for the transduction of information into nerve stimuli.
  • Extraction processes of linguistic information, established by the rules of language in our brain by learning.
  • Extraction processes of subjective information, established by cultural rules in our brain by learning.

In short, knowledge is established by means of information processing. And here the debate may arise as a consequence of the diversity of processes, of their structuring, but above all because of the nature of the ultimate source from which they emerge. Countless examples can be given. But, since doubts can surely arise that this is the way reality emerges, we can try to look for a single counterexample!

A fundamental question is: Can we measure knowledge? The answer is yes and is provided by the algorithmic information theory (AIT) which, based on information theory and computer theory, allows us to establish the complexity of an object, by means of the Kolmogorov complexity K(x), which is defined as follows:

For a finite object x, K(x) is defined as the length of the shortest effective binary description of x.

Without going into complex theoretical details, it is important to mention that K(x) is an intrinsic property of the object and not a property of the evaluation process. But don’t panic! Since, in practice, we are familiar with this idea.

Let’s imagine audio, video, or general bitstream content. We know that these can be compressed, which significantly reduces their size. This means that the complexity of these objects is not determined by the number of bits of the original sequence, but by the result of the compression since through an inverse decompression process we can recover the original content. But be careful! The effective description of the object must include the result of the compression process and the description of the decompression process, needed to retrieve the message.

Complexity of digital content, equivalent to a compression process

A similar scenario is the modeling of reality, where physical processes stand out. Thus, a model is a compact definition of a reality. For example, Newton’s universal gravitation model is the most compact definition of the behavior of a gravitational system in a non-relativistic context. In this way, the model, together with the rules of calculus and the information that defines the physical scenario, will be the most compact description of the system and constitutes what we call algorithm. It is interesting to note that this is the formal definition of algorithm and that until these mathematical concepts were developed in the first half of the 20th century by Klein, Chruch and Turing, this concept was not fully established.

Alan Turing, one of the fathers of computing

It must be considered that the physical machine that supports the process is also part of the description of the object, providing the basic functions. These are axiomatically defined and in the case of the Turing machine correspond to an extremely small number of axiomatic rules.

Structure of the models, equivalent to a decompression process

In summary, we can say that knowledge is the result of information processing. Therefore, information processing is the source of reality. But this raises the question: Since there are non-computable problems, to what depth is it possible to explore reality? 

Reality as emerging information

What is reality?

The idea that reality may be nothing more than a result of emerging information is not a novel idea at all. Plato, in what is known as the allegory of the cave, exposes how reality is perceived by a group of humans chained in a cave who from birth observe reality through the shadows projected on a wall.

Modern version of the allegory of the cave

It is interesting to note that when we refer to perception, anthropic vision plays an important role, which can create some confusion by associating perception with human consciousness. To clarify this point, let’s imagine an automaton of artificial vision. In the simplest case, it will be equipped with image sensors, processes for image processing and a database of patterns to be recognized. Therefore, the system is reduced to information encoded as a sequence of bits and to a set of processes, defined axiomatically, that convert information into knowledge.

Therefore, the acquisition of information always takes place by physical processes, which in the case of the automaton are materialized by means of an image sensor based on electronic technology and in the case of living beings by means of molecular photoreceptors. As algorithmic information theory shows us, this information has no meaning until it is processed, extracting patterns contained in it.

As a result, we can draw general conclusions about the process of perception. Thus, the information can be obtained and analyzed with different degrees of detail, giving rise to different layers of reality. This is what makes humans have a limited view of reality and sometimes a distorted one.

But in the case of physics, the scientific procedure aims to solve this problem by rigorously contrasting theory and experimentation. This leads to the definition of physical models such as the theory of electromagnetism or Newton’s theory of universal gravitation that condense the behavior of nature to a certain functional level, hiding a more complex underlying reality, which is why they are irreducible models of reality. Thus, Newton’s theory of gravitation models the gravitational behavior of massive bodies without giving a justification for it.

Today we know that the theory of general relativity gives an explanation to this behavior, through the deformation of space-time by the effect of mass, which in turn determines the movement of massive bodies. However, the model is again a description limited to a certain level of detail, proposing a space-time structure that may be static, expansive or recessive, but without giving justification for it. Neither does it establish a link with the quantum behavior of matter, which is one of the objectives of the unification theories. What we can say is that all these models are a description of reality at a certain functional level.

Universal Gravitation vs. Relativistic Mechanics

Reality as information processing

But the question is: What does this have to do with perception? As we have described, perception is the result of information processing, but this is a term generally reserved for human behavior, which entails a certain degree of subjectivity or virtuality. In short, perception is a mechanism to establish reality as the result of an interpretation process of information. For this reason, we handle concepts such as virtual reality, something that computers have boosted but that is nothing new and that we can experiment through daydreaming or simply by reading a book.

Leaving aside a controversial issue such as the concept of consciousness: What is the difference between the interaction of two atoms, two complex molecules or two individuals? Let’s look at the similarities first. In all these cases, the two entities exchange and process information, in each particular case making a decision to form a molecule, synthesize a new molecule or decide to go to the cinema. The difference is the information exchanged and the functionality of each entity. Can we make any other difference? Our anthropic vision tells us that we humans are superior beings, which makes a fundamental difference. But let’s think of biology: This is nothing more than a complex interaction between molecules, to which we owe our existence!

We could argue that in the case where human intelligence intervenes the situation is different. However, the structure of the three cases is the same, so the information transferred between the entities, which as far as we know have a quantum nature, is processed with a certain functionality. The difference that can be seen is that in the case of human intervention we say that functionality is intelligent. But we must consider that it is very easy to cheat with natural language, as it becomes clear when analyzing its nature.

In short, one could say that reality is the result of emerging information and its subsequent interpretation by means of processes, whose definition is always axiomatic, at least as far as knowledge reaches.

Perhaps, all this is very abstract so a simple example, which we find in advertising techniques, can give us a more intuitive idea. Let’s suppose an image whose pixels are actually images that appear when we zoom in, as shown in the figure.

Perception of a structure in functional layers

For an observer with a limited visual capacity, only a reality that shows a specific scene of a city will emerge. But for an observer with a much greater visual acuity, or who has an appropriate measuring instrument, he will observe a much more complex reality. This example shows that the process of observation of a mathematical object formed by a sequence of bits can be structured into irreducible functional layers, depending on the processes used to interpret the information. Since everything observable in our Universe seems to follow this pattern, we can ask ourselves the question: Is this functional structure the foundation of our Universe?

Welcome to the launch

After years of dealing with information and other subjects such as engineering, physics, and mathematics, I have decided to venture into the analysis of what we mean by reality and its relationship to information. Given the nature of the subject, I hope to stick to reason, trying to avoid any kind of speculation and not let myself be carried away by enthusiasm. Formally said, I hope that the analysis responds to “pure reason” (This is a very cool statement in the Kantian style!).

I think that when we deal with issues with deep unknowns, we humans have a tendency to divert analysis in other directions that can fill the void created by lack of certainty and knowledge. I understand that these variants are the task of another department, so, except for error, they will not be treated in this context.

When writing this post I had already written several articles on the topic that you can find in the menu bar. What I will do soon is to comment on the results obtained. In the future, I hope to continue writing new articles, but because of the complexity of the subject, I do not think that the frequency can be more than two articles per year.

I thank you in advance for your comments and collaboration!